Non-parametric Information-Theoretic Measures of One-Dimensional Distribution Functions from Continuous Time Series
نویسندگان
چکیده
We study non-parametric measures for the problem of comparing distributions, which arise in anomaly detection for continuous time series. Non-parametric measures take two distributions as input and produce two numbers as output: the difference between the input distributions and the statistical significance of this difference. Some of these measures, such as Kullback-Leibler measure, are defined for comparing probability distribution functions (PDFs) and some others, such as Kolmogorov-Smirnov measure, are for cumulative distribution functions (CDFs). We first show how to adapt the PDF based measures to compare CDFs, resulting in a total of 23 CDF based measures. We then provide a unified functional form that subsumes all these measures. We present our methodology to determine the significance (of the measures) by simulations only. Finally, we evaluate these measures for the anomaly detection in continuous time series.
منابع مشابه
A comparison of parametric and non-parametric methods of standardized precipitation index (SPI) in drought monitoring (Case study: Gorganroud basin)
The Standardized Precipitation Index (SPI) is the most common index for drought monitoring. Although the calculation of this index is usually done by using the gamma distribution fitting of precipitation data, studies have shown that for accurate monitoring of drought, the optimal distribution of precipitation in each month should be determined. On the other hand, in non-stationary time series,...
متن کاملOn the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملAnalytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...
متن کاملInformation Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009